Electrical Potential of Acupuncture Points: Use of a Noncontact Scanning Kelvin Probe
نویسندگان
چکیده
Objective. Acupuncture points are reportedly distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact used in traditional electrodermal methods have contributed to controversies over this claim. The Scanning Kelvin Probe is a state-of-the-art device that measures electrical potential without actually touching the skin and is thus capable of overcoming these confounding effects. In this study, we evaluated the electrical potential profiles of acupoints LI-4 and PC-6 and their adjacent controls. We hypothesize that acupuncture point sites are associated with increased variability in potential compared to adjacent control sites. Methods. Twelve healthy individuals were recruited for this study. Acupuncture points LI-4 and PC-6 and their adjacent controls were assessed. A 2 mm probe tip was placed over the predetermined skin site and adjusted to a tip-to-sample distance of 1.0 mm under tip oscillation settings of 62.4 Hz frequency. A 6 × 6 surface potential scan spanning a 1.0 cm × 1.0 cm area was obtained. Results. At both the PC-6 and LI-4 sites, no significant differences in mean potential were observed compared to their respective controls (Wilcoxon rank-sum test, P = 0.73 and 0.79, resp.). However, the LI-4 site was associated with significant increase in variability compared to its control as denoted by standard deviation and range (P = 0.002 and 0.0005, resp.). At the PC-6 site, no statistical differences in variability were observed. Conclusion. Acupuncture points may be associated with increased variability in electrical potential.
منابع مشابه
P01.54. Electrical potential of acupuncture points: use of a Scanning Kelvin Probe
Purpose According to conventional wisdom within the acupuncture community, acupuncture points are distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact (such as electrode pressure and skin moisture) have contributed to controversies over this claim. Because the Scanning Kelvin Probe relies on capacitive coupling and thus measures electrical ...
متن کاملBreaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
Atomic force microscopy (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g., optical, scanning electron microscopy, etc.). In this work, we develop an ultrafast AFM imaging approach allowing...
متن کاملNanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy
The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. ...
متن کاملUnderstanding the atomic-scale contrast in Kelvin probe force microscopy.
A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simulta...
متن کاملScanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy
Scanning Kelvin probe microscopy is used to image surface potential variations in GaN ~0001! grown by hydride vapor phase epitaxy. The influence of finite probe tip size on these measurements is analyzed, suggesting that significant differences between measured and actual surface potential variations may exist. Experimentally, localized regions in which the surface work function increases by ;0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012